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Combining spatial data from different sources is a common problem and poses a real 
challenge. (Gotway C.A. 2002) provides an overview of the most recent approaches and 

progress made towards combining incompatible spatial data. What is covered in this 

presentation is narrowly focused on available geostatistical approaches which are 

challenging enough. By illustrating a few examples, my aim is to introduce basic 

concepts and terminology used in geostatisitical analysis and expose the limitations of 
these methods. 
 

 

 

Gotway C.A., Y. L. J. (2002). "Combining Incompatible Spatial Data." Journal of the 

American Statistical Association 97(458): 632-648(17). 
  

 

What are multi-scale data?

• multiple sources 

• collected from the same region using 

different formats and scales

• each source (layer) may have one or more 

attributes (weed infestation, percent bare 

ground)

• sources may have different levels of 

accuracy and precision

Multi-scale data may include different formats such as points, lines, 

polygons and grids. Edzer Pabesma (Pebesma 2004) has developed the sp 

and the gstat packages with R code for analyzing different types of spatial 

data.  

 

(Zhu, Morgan et al. 2004) combine soil coring, penetrometer, and other 

topographic data to produce a fine map of depth-to-till for a Wisconson 

field.  The data collected using these methods have different resolutions and 

accuracies. Soil coring provides accurate information on depth-to-till but 

because of its expense requires this information to be collected sparingly and 

hence results in a low resolution map of a field. Soil electroconductivity 

(EC) can provide information on depth-to-till and is easy to collect hence its 
resolution will be finer than the information collected from soil coring but 

has the problem of being less accurate with more error. The soil core and 

soil EC are multi-scale data.  

 

Pebesma, E. J. (2004). "Multivariable geostatistics in S: the gstat package." 

Computers & Geosciences 30(7): 683. 

  

Zhu, J., C. L. S. Morgan, et al. (2004). "Combined mapping of soil 

properties using a multi-scale tree-structured spatial model." Geoderma 

118(3-4): 321. 
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Layers, Resolution & Accuracy

course

resolution

fine

high

low

accuracy

This slide was used to visually support the concept that resolution and accuracy aren’t 

necessarily one in the same. Certainly we want to create maps that have fine resolution 
and are accurate. However, data that are easier to collect for providing finer maps are 

easier because the methodology used to collect them is quick, inexpensive and prone to 

error. 

General Problem

• Inference at the level of one layer may be 

desired using information gathered from 

other levels 

• Question may be “How do soil attributes 

measured at point locations relate to weed 

infestation measured on rectangular 

units?”

(Gotway 2002) gives several examples where data is on one scale but inference is desired 

at another. Individual level inference is wanted but because of privacy issues data is only 

available at some aggregate level. Data from Standard Metropolitan Statistical areas may 

be available but information at the county level may be needed. 

 
 

 

 
 

Gotway, C. A. w. Young, L.J. (2002). "Combining Incompatible Spatial Data." Journal of 

the American Statistical Association 97(458): 632-648(17). 
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Focus

• Use topographic and soil attributes to 
predict crop yield

• Predict at aggregate levels

• Mapping applications

• Use available geostatistical (kriging) 
methods
– R programs

• Packages (Edzer Pabesma, 2005)

– gstat

– sp

The focus of this presentation is to examine a few geostatistical methods (mainly kriging 

systems) that involve problems with combining misaligned spatial data. Definitions of 

terms related to the problems will also be given. 
 

My intention is to provide information of available tools that can be used to krige data. 

These are available for free from the  R Development Core Team (2005) . All of the 

kriging systems were fitted using the gstat package (Pebesma 2004) . There is a variety 

of example code for fitting similar systems in the gstat package. You need to download 

the package and once downloaded refer to the directory  
C:\Program Files\R\R-2.2.1\library\gstat\demo for example code. I found these scripts 

very helpful. 

  

 
Pebesma, E. J. (2004). "Multivariable geostatistics in S: the gstat package." Computers & 

Geosciences 30(7): 683. 
  

R Development Core Team (2005). R: A language and environment for 

statistical computing. R Foundation for Statistical Computing, 

Vienna, Austria. ISBN 3-900051-07-0, URL http://www.R-project.org  
  

 

 

Example 1: Field scale study 
relating elevation to yield

Models were fit that use elevation 
to predict spatial crop yield values. 
(Green & Erskine, 2004)

Can elevation help predict yield 
for large plots (blocks) in the field?

(Green 2004) addresses quantification of spatial variability of crop yield and soil water at 

farm scales using geostatistical and fractal analyses. His data are used in this example to 

demonstrate kriging methods for predicting wheat yield at the particular Nothern 
Colorado farm. 

 

Timothy R. Green, R. H. Erskine. (2004). "Measurement, scaling, and topographic 

analyses of spatial crop yield and soil water content." Hydrological Processes 18(8): 
1447-1465. 
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Yield and elevation maps
Yield data (Green 2004) was collected from a field of roughly 800 square meters area 

using a combine mounted with a calibrated monitoring device to measure yield in bushels 

per acre. A GPS system was used to mark the 6701 points on the field where yield was 

recorded. Each yield value represents around 10 square meters of area. Because of 

various factors (e.g. the combine will not move at a regular speed) the actual area 
represented at each point will vary and yield values can be expected to be quite noisy.  

 

Elevation data was collected over the same area using an all terrain vehicle. These data 
were interpolated to a regular grid of 5 meter spacing. These interpolated values of 

elevation should be very accurate representing small deviations from the true elevation (~ 

0.05 m). 

 

Yield and elevation maps were generated using the sp (Pebesma 2005) 

package in R.. See ‘wheat yield and elevation plots.R’ in the wheat folder on the ftp site. 
 

 

Green, T. R., Erskine, Robert H. (2004). "Measurement, scaling, and topographic 
analyses of spatial crop yield and soil water content." Hydrological Processes 18(8): 

1447-1465. 
  

Pebesma, E. J., Bivand, Roger S. (2005). S Classes and Methods for Spatial Data:the sp 

Package. 

  
 

 

Example 2: Precision 
agriculture

Soil electroconductivity (EC) 
mapping to explain yield variability 
for a center pivot cropping system 
in Northern Colorado.

Can EC help predict yield for large 
blocks in the center pivot system?

The Water Management Research Unit in Fort Collins develops irrigation, agricultural 

chemical, and other management practices that protect water quality for all Americans 

while improving the husbandry of natural resources and the irrigator's economic viability. 

Research covers precision farming with center pivot sprinklers, remote sensing, and weed 

management for reduced applications of chemicals.    
 

The data given here was collected in 1999 for relating various soil properties with soil 

electroconductivity (EC). Yield data was collected in 1999. Each point roughly represents 
around 11 to 12 sq. meters (the swath length is 20 ft.; the distance between points is 

around 6 ft). 
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Yield and electroconductivity (EC) 
maps

This data is similar the wheat and elevation data. The data given here was collected in 

1999 for relating various soil properties with soil electroconductivity (EC). Yield values 

represent around 11 to 12 sq. meters. The EC data are measured can be expected to be 

much noisier than the elevation data.  

 
 

 

Yield and EC maps were generated using the sp (Pebesma 2005) 

package in R.. See ‘corn yield and EC plots.R’ in the corn folder on the ftp site. 
 

 

Pebesma, E. J., Bivand, Roger S. (2005). S Classes and Methods for Spatial Data:the sp 

Package. 

  
 

 

Methods

• Aggregation

• Change of Support (COSP)

• Kriging

– Point Kriging

– Cokriging models

– Block kriging

• Spatial joins

Methods used to combine multi-scale spatial data include aggregation, various kriging 

methods and those that involve what is referred to as a change of support (block kriging). 
We may be interested in changing from a point system to a system of blocks, from a 

system of  blocks to a system of points., or from a system of blocks to another system of 

blocks.  
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Aggregation –
averaging over point values to form 

areal units

It is a well-known fact of statistics that averaging reduces variance. The apparent spatial 
variation also changes with aggregation. 

Support of data

This slide is provided to point out data can be recorded at points but may have areal 
support. The yield data in both examples are geo-referenced at points but because the 

grain collected by the combine is collected over a region it represents yield over some 

small area (around 10 square meters for the wheat yield and around 11 square meters for 
the corn yield). 
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Why Aggregation?

• Prediction: prediction is wanted at larger 

scales

• Different support: aggregation 

transforms a variable from point support to 

areal support. 

• Smoothing: aggregation smoothes out 

noise to detect trends

It isn’t uncommon where data is collected at one scale and inference is desired at another. 
Making inferences on block averages whose support is different from those of the data is 

called a change of support problem. (Isaaks and Srivastava 1989) give an example of a 

mining operation where data are collected at points but mining operations involve only 

large blocks of material extracted from the mine. Having only point data on hand the 

problem here is to estimate the distribution of the average tonnage of ore contained in 

blocks. To estimate this sampled point data need to be aggregated to the size of  blocks 
and the distribution of values associated with blocks may then be used to base decisions. 

By aggregation we mean obtaining a weighted average. To estimate the average tonnage 

of ore 
B

Z  for a block B  we need to come up with an estimate based on sampled values 

iZ in the neighborhood of block. The estimator B i ii
Ẑ Z= λ∑ is derived by choosing 

weights 
i

λ that account for the spatial variation in the
i

Z and the estimated spatial 

variation occurring on the block scale. Spatial variation for the change of support 

problem is modeled through a variogram (h)γ  of the iZ . 

 

Isaaks, E. H. and R. M. Srivastava (1989). Applied geostatistics. New York, Oxford 

University Press. 
  

 

 

Support effect

wheat data 

The support effect is the change of distribution of statistics that results when data are 

aggregated. Quoting from (Gotway 2002), ‘Changing the support of a variable (typically 

by averaging or aggregating) creates a new variable. This new variable is related to the 
original one, but has different statistical and spatial properties,’ 

 

Gotway, C. A. w. Y., L.J.) (2002). "Combining Incompatible Spatial Data." Journal of 
the American Statistical Association 97(458): 632-648(17). 
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Scale  Problem

The effect of the change of support realized by increasing the areas for which aggregation 

is performed is called the scale effect. The differences in the statistical properties of the 
variograms are obvious with scale changes for both examples.  

Problems of Aggregation

• Change of support problem (COSP)

– How can spatial variation at the point 

support scale be used to estimate 

spatial variation at an aggregate scale?

– COSP modeled through variogram

– Similar to using population variance to 

form inferences using sample means.
2 2 2

y y y nσ σ σ→ =→ =→ =→ =

 Making inferences on block averages whose support is different from those of the data is 

called a change of support problem. (Isaaks and Srivastava 1989) give an example of a 

mining operation where data are collected at points but mining operations involve only 

large blocks of material extracted from the mine. Having only sampled point data 
available a big problem is to estimate the distribution of the average tonnage of ore 

contained in blocks.  

 

 
Isaaks, E. H. and R. M. Srivastava (1989). Applied geostatistics. New York, Oxford 

University Press. 
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Aggregation Methods

• Generic : weighted average of values Zi for 
estimating average for an area B of size |B| 

• Arithmetic means: simple averages                
(             ,  n= sample size) ignore spatial 
structure

• Kriging: averages use weights       derived 
from spatial structure         - variogram

 
i iB B i Bi i

Ẑ Z , 1λ λ= == == == =∑ ∑∑ ∑∑ ∑∑ ∑

iB 1 nλ =

iBλ

(h)γγγγ

By aggregation we mean obtaining a weighted average. To estimate the average BZ  of a 

variable Z  for a block B  we need to come up with a weighted average 
iB B ii

Ẑ Z= λ∑  

based on sampled values 
i

Z in the block neighborhood. Later more detail will be given 

when the method of block kriging is described.  

 

Some Notation 

• S = point where an observation is 

made

• Z(S) = value of observation at S

• = error from mean value at S

• = mean value at for any S 

• = mean value that depends on 
location S and/or predictors at S

s( )δ

µ
s( )µ

Notation added to clarify expressions to follow. 



212

Ordinary and Universal Kriging

Ordinary Kriging

–Model:          

• Universal Kriging

–Model:

• Predictor:

–

Z( ) =s  s( )µ + δ

i ii
Z(S)=

λ

Z(S )  ⋅∑

Z( ) =s  s s( ) ( )µ + δ

th

i

λ

 weight of i  value, derived from variogram of (S)

 and/or predictors

δ

Kriging is a method of spatial prediction. The predictors are in the form of a weighted 

average
i ii

Ẑ Zλ= ⋅= ⋅= ⋅= ⋅∑∑∑∑ . The differences in these two kriging methods are their underlying 

models.  

 
For ordinary kriging, the underlying model for the Z is a constant mean plus error where 

errors are spatially autocorrelated. The spatial autocorrelation of errors doesn’t depend on 

location.  The 
i

λ  are derived using the model assumptions to give the minimum mean-

squared prediction error. For ordinary kriging, the 
i

λ  are a function of the variogram 

(h)γ that describes the autocorrelation of errors.  

 
 

For universal kriging, the underlying model for the Z is a mean that depends on location 

and/or other predictor variables plus error where the errors are spatially autocorrelated. 
Again, the spatial autocorrelation of errors doesn’t depend on location. For universal 

kriging, the 
i

λ  are a function of the variogram (h)γ  that describes the autocorrelation of 

errors and the predictors that are modeling the mean. 

Cokriging

• Simultaneously krige two or more 

variables 

• Not only requires fitting of variograms for 

each variable but also requires fitting of 

the cross-variogram for each pair of 

variables

i i j j i ii j

j j

Z(s)=

λ

Z(s )  + X(u )         Z(s ) yield at locations s

  X(u ) EC at locations u

⋅ ω ⋅∑ ∑

Cokriging is a method originating from the need for predicting a primary variable Z that 
is undersampled (because it may be expensive to sample) but another secondary variable 

X is available that is related to Z and more heavily sampled (because X it is less 

expensive/difficult  to sample). Both X(S) and Z(S) are fitted to a model simultaneously. 

This is a form of multivariate prediction modeling. The estimator for an unknown Z is of 

the form  
i i ji j j

Ẑ Z Xλ ω= ⋅ + ⋅= ⋅ + ⋅= ⋅ + ⋅= ⋅ + ⋅∑ ∑∑ ∑∑ ∑∑ ∑  . The usefulness of the secondary variable for 

predicting the primary variable is enhanced when the primary is undersampled. See 

(Isaaks and Srivastava 1989) for a more complete description. 

 

Isaaks, E. H. and R. M. Srivastava (1989). Applied geostatistics. New York, Oxford 
University Press. 
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Block Kriging

• estimate the mean value of an attribute for a local 
area B using points in the neighborhood of B

• used with either ordinary, universal or cokriging

• variogram is adjusted to handle the scale effect

• estimator: 
iB ii

Z(B)=

λ

Z(s )     
B

1ˆ Z(s)ds
B

⋅ ≈∑ ∫

Block kriging is an aggregation method for estimating or predicting an average value 

B
Ẑ over an area B. The estimator 

iB B ii
Ẑ Z= λ∑ is derived by choosing weights 

iB
λ that 

account for the spatial autocorrelation in the iZ and the estimated spatial autocorrelation 

occurring on the block scale. Therefore we need to know how the autocorrelation among 

units on the point scale changes to autocorrelation among units on the block scale. Spatial 

variation for the change of support problem is modeled through a variogram (h)γ  of the 

i
Z .(Cressie 1993) describes the needed calculations to modify the point support 

variogram (h)γ to the block support variogram (B)γ (pages 124-125,) for block kriging 

(aggregation over an area B). 

 

 
Cressie, N. A. C. (1993). Statistics for spatial data. New York, J. Wiley. 

  

 

 

Spatial Join of datasets

• Combine two or more datasets with different attributes 

measured at different locations by translating them to 

same location. 

• Problems

– Trans-locating à errors in variables problem

– Ad Hoc approach, descriptive purposes

• Benefits 

– plotting techniques reveal relationships and needed 

transformations for other more legitimate methods

– attributes can be studied together

Data measured at different locations can be joined many different ways. Consider two 

geostatistical datasets A and B each with different attributes. One approach would be to 

conduct a search of points in dataset B for each data point in dataset A. The attribute 
values corresponding to the points in B nearest in distance to those in A are joined with 

those of A. Another approach would be to lay a grid over the intersection of the areas 

from which datasets are formed.  For each point in the grid, a search is conducted to find 
the points in A and in B that are closest and these two are joined. Yet another way would 

be to spatially interpolate all the points in B to those in A. Many Geographic Information 

Systems provide software for joining misaligned data but the capabilities of the software 

is limited to descriptive purposes. 

 
See joindata.R for an R program that quickly joins two datasets. 
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Scatterplots of spatially joined data

When kriging methods involve predictors, they are linear functions of the predictors. 

Spatial joins were used to construct scatterplots to study the relationships between yield 

and predictors to find transformations that ensure linearity. In both cases, suitable 
transformations were found. 

A spatial join may be used to see if 
relationships are stationary 

After creating a spatial join, 
Pearson’s r was calculated 

as a moving window 

statistic to consider how 
the relationship between 

EC and YIELD may 
change throughout the 

region

Using spatially joined data from the center pivot example, Pearson’s correlation 

coefficient was used as a ‘moving-window’ statistic. A 12x12 m grid was overlaid on the 

center-pivot area. For each point on the resulting grid, all points in the spatially joined 

dataset within a 100 m radius were selected and the correlation coefficient was computed, 

and then mapped.  
 

(Carroll and Oliver 2005) give details of this technique in their study of EC and soil 

properties.  
 

Carroll, Z. L. and M. A. Oliver (2005). "Exploring the spatial relations between soil 

physical properties and apparent electrical conductivity." Geoderma 128(3-4): 354. 
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Attribute characteristics

• Wheat Yield / Elevation

– Response: Yield

– Predictor: Elevation, measured with little 
error

– location: measured at different locations 

• Corn Yield / EC

– Response: Yield

– Predictor:  EC,  measured with a lot of error

– location: measured at different locations

Before looking at the specific problems for using elevation or EC to help predict yield 

using kriging methods, this slide is given to motivate why different approaches for 

predicting yield are taken  

 

For the wheat yield data, elevation has so little error associated with it that it is practical 
to treat these values as being static. There will be little error incurred by interpolating 

elevation values to points where wheat yield is observed. Doing this we act as if both 

yield and elevation are measured at the same points in the field. I view this problem as a 

univariate regression problem where the predictor, elevation, is known for any point in 
the field 

 

For the corn yield data, soil EC has a lot of error associated with it to begin with. 

Interpolating EC value to points where corn yield is observed will add more error. For 

practical as well as illustrative reasons corn yield and soil EC joined to the same points 
for analysis. I view this problem differently in that it lends itself to a cokriging 

application.  

Suggested approach using 
elevation to help predict yield

• Universal Kriging

– interpolate values of the elevation to locations 
where yield is recorded 

– use elevation as a predictor  

Using the example datasets, two approaches are considered for incorporating the 
predictor variables with kriging methods. 

 

For the wheat yield example, universal kriging will seems to be a reasonable approach for 

predicting yield using the model (((( )))) (((( ))))Z S (S) X S (S)µ β δ= + ⋅ += + ⋅ += + ⋅ += + ⋅ +  where 

(((( ))))Z S log(Yield)====  at location S, (S)µ is the mean value of log(Yield) at location S, 

(((( ))))X S ====  interpolated value of log(Yield) at location S and (S)δ  is the error at 

location S.  Although elevation is not observed at the same locations as yield, 
interpolating elevation to those points where yield is measured should incur little 
error. 
 
For the corn yield example, universal cokriging will be used on the basis that a 

reasonable model for predicting yield is (((( ))))Z S (S) (S)µ δ= += += += +  where (((( ))))Z S  represents the 

bivariate values of both yield and EC at location S, (S)µ  represents the mean of the 

bivariate values at location S and (S)δ represents the bivariate errors at location S.  
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Predicting corn yield
Can EC help prediction?

• Hold out thirty 40 x 40 m2 grid cells for 

comparison of prediction methods 

• Use remaining data to fit prediction models; 

ordinary kriging, universal kriging, and 

universal cokriging

• Block krige yield to 40 x 40 m2 grid using 

each method & obtain standard errors

Steps used to compare kriging methods for the corn yield data are similar to that of the 
wheat yield only yield data and EC data weren’t spatially joined.  

 

The usefulness of universal cokriging for predicting blocks of unsampled plots was tested 

by holding out a set of thirty randomly selected 40 x 40 m
2
 blocks, predicting their 

average values and comparing them back to the actual means for those blocks.  For 

comparison purposes, ordinary kriging and universal kriging using locations were 
included. Using each kriging method, yield was block kriged to predict average values 

for the 40 x 40 m
2
 held out blocks. The abilities of these methods for prediction were 

evaluated by comparing r
2
. Standard errors of the estimates were also compared.  

 

The spatial autocorrelation structure of the errors for the model was fitted to Gausian 
variogram models. For universal kriging, residuals were obtained by fitting a trend 

surface of yield over the field. The residuals were then used to obtain an empirical 

variogram. The empirical variogram was fitted to a Gaussian variogram model by least 
squares.  

 

 

Kriging approach using EC to help 
predict yield values on blocks

• Cokriging

– Simultaneously krige both yield and EC 

– Fit linear model of coregionalization (LMC)

• a method for fitting variograms for yield and EC 

and the cross-covariogram of EC and yield

0 i i j j i ii j

j j

Z(s )=

λ
Z(s )  + X(u )         Z(s ) yield at locations s

  X(u ) predictor at locations u

⋅ ω ⋅∑ ∑

I chose to explore the ability of cokriging yield and EC because I felt this to be a 

reasonable application to cokriging. I felt this to be a more reasonable application than 

cokriging yield and elevation since the error in elevation was expected to be very small. 
A linear model of coregionalization was used to fit the variograms and cross-variogram 

for yield and EC. The method is described in (Isaaks and Srivastava 1989) and as a word 

of warning can be quite an undertaking.  
 

Isaaks, E. H. and R. M. Srivastava (1989). Applied geostatistics. New York, Oxford 

University Press. 
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Fitted cross-variogram for cokriging
yield and EC

Cokriging requires fitting of the cross-variograms(semivariograms) as well as the 
variograms.  

Validation Sites

Random samples of  thirty 40 x 40 m2 blocks of data were held out in order to compare 
methods. The plot shows the locations of these plots. 
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Compare methods

• OK: Ordinary kriging

• LMC: cokriging with linear model of 

coregionalization

• UK: Universal kriging

• True Mean: Observed average yield

To follow methods of prediction, abbreviations are made. Kriging methods compared for 
predicting the thirty held out plots in the field  are; OK – ordinary kriging; UK – 

universal kriging using locations as predictors; LMC – universal cokriging of yield and 

EC using a method of fitting a cross-covariogram called linear model of 
coregionalization; truemean – is used to denote the actual sample average observed for 

the held out plots. See (Isaaks and Srivastava 1989) for details of the linear model of 

coregionalization.  

Compare predictions

r2=0.73

r2=0.85

r2=0.91

The scatterplot matrix is used to make comparisons among the predictions for the means 

of the holdout plots. Each of the methods compared are weighted averages of values at 

points in the neighborhood of the plot being estimated. All of the estimates agree well 
with the true sample averages for the plots being estimated. r

2
 is calculated by squaring 

the correlation coefficient computed between the true sample average for each of the 

thirty holdout plots and the corresponding prediction values obtained by each method: 
OK – ordinary kriging; UK – universal kriging using locations as predictors; LMC – 

universal cokriging of yield and EC using a method of fitting a cross-covariogram called 

linear model of coregionalization .See (Isaaks and Srivastava 1989) for further details. 

Based on the r
2
, there appears to be some increased ability of prediction over ordinary 

kriging using the universal and cokriging methods. However, this may be due to the 
search region of points used for making the predictions. 
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Compare standard errors of 
methods used

Standard 

errors for 
LMC 

smaller 

than for OK 
and UK

Ordering the methods from largest to smallest on the basis of size of standard errors, 

ordinary kriging is showing the largest standard errors, then the next largest is for 

universal kriging  and the smallest is for  universal cokriging. Intuition would lead you to 
think this would be the order relation for these standard errors. The more information 

used would lead to more precise estimates. However, I am wary of these estimates 

because of the personal choices I made in the fitting of the variograms used for 

developing these universal kriging predictors. As a check I computed approximate 95% 
confidence intervals by calculating estimate +/- 2 standard errors, and found the 

proportion of intervals that cover the true means to be 3% with the LMC. An adjustment 
to the variogram estimates brought this coverage up to 100% with the standard errors still 

smaller than those for the ordinary kriging method. 

Summary

• kriging is spatial prediction tool that uses weighted averages 
– weights depend on autocorrelation structure

– explanatory variables may adjust the weights for a more accurate
prediction - cokriging or universal kriging

• cokriging and universal kriging are ways to incorporate multi-scale 
data

• aggregation methods compared here give similar predictions but 
some accuracy and precision may improve with predictors

• block kriging is a useful scaling tool 

• joining misaligned spatial data may be useful as a 
exploratory/descriptive tool 

• examples given involve heavily sampled spatial regions– with less 
heavily sampled data a predictor may have bigger impact 

• focus was on geostatistical methods, newer Bayesian methods 
namely tree-structured hierachical models may be more effective 
(Zhu 2004, 2005)

To summarize, geostatistical methods covered here mostly revolve around mapping 

applications. Although difficult, different sources of data can be combined to improve 

mapping accuracy and precision.  
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Thank You


